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Solution to the consumer’s optimization problem

The representative consumer of the generation born at time s chooses the opti-
mal sequence of consumption, cs,v, and real money balances, ms,v, in order to
maximize her lifetime utility function

∫ ∞

t

log Ω (cs,v,ms,v) e
−(µ+ρ)(v−t)dv, (1T)

subject to the budget constraint

•
as,t = (Rt − πt + µ) as,t + ys,t − τ s,t − cs,t −Rtms,t, (2T)

and to the transversality condition

lim
v→∞

as,ve
−

∫
v

t
(Ru−πu+µ)du ≥ 0, (3T)

where all variables are defined as in the main text.
Let zs,t denote total consumption, defined as the sum of consumption plus

the interest foregone on real money holdings: zs,t = cs,t +Rtms,t.
The consumer’s problem can be solved by using a two-stage budgeting pro-

cedure.

First stage In the first stage, the representative consumer of generation born
at time s chooses the optimal mix of consumption and real money holdings so
as to maximize the instantaneous utility function, log Ω (cs,t,ms,t) , for a given
level of total consumption, zs,t. The first order condition for a maximum is:

Ωm (cs,t,ms,t)

Ωc (cs,t,ms,t)
= Rt. (4T)

which can be re-written as

cs,t = Γ(Rt)ms,t, (5T)

since Ω (·, ·) is assumed to be a linearly homogenous function. Function Γ(·) is
such that Γ′ (Rt) > 0 and Γ (Rt) − RtΓ

′ (Rt) > 0, where the latter condition
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follows from the assumption that the elasticity of substitution between real
money balances and consumption, say σ, is less than one. From (5T) in fact:

d
cs,t
ms,t

= Γ′ (Rt) dRt. (6T)

Dividing both sides of (6T) by
cs,t
ms,t

and recalling (5T) give:

d
cs,t
ms,t

cs,t
ms,t

=
Γ′ (Rt)

Γ (Rt)
Rt

dRt

Rt

. (7T)

It follows that the elasticity of substitution between real money balances and
consumption can be expressed as:

σ =
d
cs,t
ms,t

cs,t
ms,t

/
dRt

Rt

=
Γ′ (Rt)

Γ (Rt)
Rt. (8T)

Second stage In the second stage, the representative consumer born at time
s solves an intertemporal optimization problem and derives the optimal time
path of total consumption, zs,t. Using the definition of total consumption and
the optimal condition (5T), the instantaneous utility function can be expressed
in function of total consumption:

log Ω (cs,t,ms,t) = log Ω

(
Γ(Rt)

Γ(Rt) +Rt

zs,t,
1

Γ(Rt) +Rt

zs,t

)
. (9T)

Since Ω (cs,t,ms,t) is linearly homogenous, the instantaneous utility function
can be written in a more compact fashion as:

log Ω (cs,t,ms,t) = log qt + log zs,t, (10T)

where qt ≡ Ω
(

Γ(Rt)
Γ(Rt)+Rt

, 1
Γ(Rt)+Rt

)
.

Using this result, the intertemporal optimization problem can be stated as
follows:

max
{zs,t}

∫ ∞

t

[log qt + log zt,v] e
−(µ+ρ)tdt, (11T)

subject to
•

as,t = (Rt − πt + µ) as,t + ys,t − τ s,t − zs,t, (12T)

and given as,t and for z > 0.
The optimal solution is obtained by setting up the following current-value

Hamiltonian function:

Ht =
{
[log qt + log zs,t] + λs,t

[
(Rt − πt + µ) as,t + ys,t − τ s,t − zs,t

]}
e−(µ+ρ)t,

where as,t is the state variable, zs,t is the control variable and λs,t is the co-state
variable.
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Necessary and sufficient conditions for the optimum are:
∂Ht

∂zs,t
= 0→ zs,t =

1
λs,t

,

dλs,te
−(µ+ρ)t

dt
= − ∂Ht

∂as,t
→

•

λs,t = (ρ−Rt + πt)λs,t,

Combining the above conditions we obtain the optimal path of total con-
sumption for an individual:

•
zs,t = (Rt − πt − ρ)zs,t. (13T)

This shows equation (8) of the main text.

Derivation of equation (9)

A closed form solution for total consumption at the individual level can be
derived as follows. Consider the instantaneous budget constraint:

•
as,t − (Rt − πt + µ) as,t = ys,t − τ s,t − zs,t. (14T)

Multiplying both terms by factor e−
∫
v

t
(Ru−πu+µ)du and integrating them for-

ward, (14T) becomes:
∫ ∞

t

[
•
as,v − (Rv − πv + µ) as,v

]
e−

∫
v

t
(Ru−πu+µ)dudv (15T)

=

∫ ∞

t

(
ys,v − τ s,v − zs,v

)
e−

∫
v

t
(Ru−πu+µ)dudv.

The lhs of the above equation can be simplified as follows:

LHS =
[
as,ve

−
∫
v

t
(Ru−πu+µ)du

]∞
t

,

= lim
v→∞

as,ve
−

∫
v

t
(Ru−πu+µ)du − as,t,

= −as,t,

where we have used the fact that lim
v→∞

as,ve
−

∫
v

t
(Ru−πu+µ)du = 0.

The rhs can be expressed as:

RHS = hs,t −

∫ ∞

t

zs,ve
−

∫
v

t
(Ru−πu+µ)dudv,

where we have used the definition of human wealth: hs,t =
∫∞

t

(
ys,v − τ s,v

)
e−

∫
v

t
(Ru−πu+µ)dudv.

It follows that (15T) can be written as:
∫ ∞

t

zs,ve
−

∫
v

t
(Ru−πu+µ)dudv = hs,t + as,t, (16T)

which is the intertemporal budget constraint of the individual born at time s
according to which the present discounted value of total consumption must be
equal to the level of total wealth (human and financial wealth).
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Using condition (8), the level of total consumption at time v ≥ t, zs,v, can
be expressed in function of zs,t :

zs,v = zs,te
∫
v

t
(Ru−πu−ρ)du. (17T)

Plugging the above solution into (16T) and solving the integral give:

zs,t = (µ+ ρ)
(
as,t + hs,t

)
. (18T)

This demonstrates equation (9).

Derivation of equations (10) and (11)

Combing (4) and (6) yields

zs,t =

(
1 +

Rt

Γ (Rt)

)
cs,t, (19T)

which can be re-written more compactly as

zs,t = L(Rt)cs,t, (20T)

where L(Rt) = 1 +
Rt

Γ(Rt)
with L′(Rt) =

Γ(Rt)−RtΓ
′(Rt)

[Γ(Rt)]
2 .

Time-differentiating (20T) gives

•
zs,t = L′(Rt)

•

Rt.cs,t +
•
cs,tL(Rt). (21T)

Using the above results it is straightforward to obtain the following equations
for individual consumption:

•
cs,t = (Rt − πt − ρ) cs,t −

L′(Rt)
•

Rt

L(Rt)
cs,t, (22T)

cs,t =
µ+ ρ

L(Rt)

(
as,t + hs,t

)
. (23T)

Derivation of equation (17)

By definition, per capita aggregate financial wealth is

at = β

∫ t

−∞

as,te
β(s−t)ds. (24T)

Differentiating with respect to time the above equation using Leibnitz’s rule

•
at = βat,t − βat + β

∫ t

−∞

•
as,te

β(s−t)ds, (25T)
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where βat,t is the newborns’ financial wealth and is equal to zero by assumption
(agents are born with zero wealth since there is no bequest motive). Using (??),
(25T) can be re-written as:

•
at = −βat + µat + (Rt − πt) at + yt − τ t − ct −Rtmt (26T)

= (Rt − πt − n) at + yt − τ t − ct −Rtmt.

This shows (17).

Fiscal solvency

Consider equation (22) of the text:

•
at = [R(πt)− πt − n− θ] at, (27T)

whose backward solution, given the initial condition a0, is

at = a0e
∫
t

0
(Ru−πu−n−θ)du, (28T)

which is stable for t→∞ as long as n+θ ≥ Ru−πu. In fact for an initial finite
level of a, lim

t→∞
at is finite if θ + n ≥ Ru − πu. Re-writing (28T) gives:

ate
−

∫
t

0
(Ru−πu)du = a0e

−(n+θ)t (29T)

where the limit for t→∞ of the rhs is zero, given any initial finite value of a as
long as n+θ > 0. The limit of the lhs is also equal to zero as long as the limit of
at is finite and this is the case since equation (27T) is a stable process. It should
be noted that at the intended steady state Ru − πu = ρ, hence ρ− n− θ < 0 is
a sufficient condition for fiscal solvency in its neighborhood.

Steady State Equilibria

The steady-state equilibrium is defined from equations (21) and (22) setting
•
πt,

•
at = 0 :

[R(π)− π − ρ]
L [R(π)]

L′ [R(π)]R′(π)
− β(ρ+ µ)

a

L′ [R(π)]R′(π)
= 0, (30T)

[R(π)− π − n− θ] a = 0. (31T)

Under general conditions there exist at least two steady state equilibria
(π∗, a∗) and (π̂, â) characterized as follows:

R(π∗)− π∗ = ρ, a∗ = 0 (32T)

R(π̂)− π̂ = n+ θ, â =
[R(π̂)− π̂ − ρ]L [R(π̂)]

β(ρ+ µ)
(33T)
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Local Analysis

From equations (21) and (22):

∂
•

πt
∂πt

=
[R′(πt)−1]L[R(πt)]+[R(πt)−πt−ρ]L′[R(πt)]R

′(πt)

L′[R(πt)]R′(πt)

−
{L

′′

[R(πt)]R
′(πt)

2+L′[R(πt)]R
′′

(πt)}{[R(πt)−πt−ρ]L[R(πt)]−(ρ+µ)βat}

{L′[R(πt)]R′(πt)}
2

∂
•

πt
∂at
= − β(ρ+µ)

L′[R(πt)]R′(πt)

∂
•

at
∂at
= R(πt)− πt − n− θ

∂
•

at
∂πt

= [R′(πt)− 1] at

Using (32T) the above partial derivatives at (π∗, a∗) are equal to:

∂
•
πt

∂πt
= [R′(π∗)− 1]

L [R(π∗)]

L′ [R(π∗)]R′(π∗)
,

∂
•
πt

∂at
= −

β(ρ+ µ)

L′ [R(π∗)]R′(π∗)
,

∂
•
at

∂at
= ρ− n− θ,

∂
•
at

∂πt
= 0.

Using (33T) the corresponding partial derivatives at (π̂, â) are equal to:

∂
•
πt

∂πt
=

[R′(π̂)− 1]L [R(π̂)]

L′ [R(π̂)]R′(π̂)
+ [R(π̂)− π̂ − ρ] ,

∂
•
πt

∂at
= −

β(ρ+ µ)

L′ [R(π̂)]R′(π̂)
,

∂
•
at

∂at
= 0,

∂
•
at

∂πt
= [R′(π̂)− 1]

[R(π̂)− π̂ − ρ]L [R(π̂)]

β(ρ+ µ)
.
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