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1 Intermediate goods-producing firms

The production function of the typical intermediate-good producer j is

Yj,t = At (Kj,t)
1−α

(ZtNj,t)
α
. (A-1)

Cost minimization, taking the nominal wage rate Wt and the rental cost of capital RKt as given, yields
the standard optimality conditions,

Wt

Pt
= αMCj,t

Yj,t
Nj,t

, (A-2)

and
RKt
Pt

= (1− α)MCj,t
Yj,t
Kj,t

, (A-3)

thus, real marginal cost, MCt, obtained combining the two equations, is common to all firms and given
by:

MCt =
1

αα (1− α)1−α
1

AtZαt

(
RKt
Pt

)1−α(
Wt

Pt

)α
. (A-4)

The typical firm j able to set its price optimally at time t maximizes the present discounted value of
expected real profits generated while the price remains unchanged. Let Qt,t+i denote the stochastic
discount factor, formally, the Lagrangian function is

Et

∞∑
i=0

ξipQt,t+i

{
P∗j,t
Pt+i

Yj,t+i − Wt+i

Pt+i
Lj,t+i − RK,t

Pt+i
Kj,t+i+

+MCj,t+i
(
AtK

1−α
j,t (ZtNj,t)

α − Yj,t+i
) } , (A-5)
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given the demand schedule Yj,t+i =
(
P∗j,t
Pt+i

)−θ
Yt+i. The first-order condition associated to the above

problem gives

P ∗t
Pt

=
θp

θp − 1
Et
∑∞
i=0 ξ

i
pQt,t+iMCt+i

(
Pt+i
Pt

)θp
Yt+i

Et
∑∞
i=0 ξ

i
pQt,t+i

(
Pt+i
Pt

)θp−1
Yt+i

, (A-6)

where we have dropped the j-index since all firms able to set their price optimally at time t will make the

same decisions. Now define two artificial variables, namely, xt = Et
∑∞
i=0 ξ

i
pQt,t+iMCt+i

(
Pt+i
Pt

)θp
Yt+i

and zt = Et
∑∞
i=0 ξ

i
pQt,t+i

(
Pt+i
Pt

)θp−1
Yt+i and denote p∗t =

P∗t
Pt
.

Notice that the optimal price condition for the typical firm able to reset its price at time t can be
re-written as

P ∗t =
θp

θp − 1
Et
∑∞
i=0 ξ

i
pQt,t+iMCt+i

(
Pt+i
Pt

)θp
Yt+i

Et
∑∞
i=0 ξ

i
pQt,t+i

(
Pt+i
Pt

)θp−1
Yt+i

1

MCt
MCNt , (A-7)

where the term θp
θp−1

Et
∑∞
i=0 ξ

i
pQt,t+iMCt+i

(
Pt+i
Pt

)θp
Yt+i

Et
∑∞
i=0 ξ

i
pQt,t+i

(
Pt+i
Pt

)θp−1
Yt+i

1
MCt

is the optimal markup of the re-optimizing

firm and MCNt is the nominal marginal cost. Clearly, this markup depends positively on the expected
discounted value of real marginal costs stemming from a price change occurring at time t. Diminishing
marginal productivity of labor implies that the marginal cost is a convex function of labor inputs. For
this reason, a higher variability in labor inputs, due to real uncertainty, tends to increase the expected
future marginal costs, thus increasing the price set by firms and implying a higher markup.
Notice that in the limiting of flexible prices (i.e. with ξp = 0), the above condition collapses to the

familiar first-order condition:

P ∗t = Pt =
θp

θp − 1
MCNt . (A-8)

Of course, in this case, monetary neutrality is restored, in the sense that monetary policy does not
influence nominal prices that instead adjust instantaneously to meet any change in the nominal marginal
cost so as to keep the markup at the optimal level, namely θp

θp−1 . As a consequence, the markup channel
through which uncertainty affects growth is not operative.
Using the fact that is the stochastic discount factor Qt,t+i used at time t by shareholders to value

date t+ i, is defined as Qt,t+i = βi CtPt
Ct+iPt+i

, the optimal price equation (A-6) can be re-written as follows

p∗t =
θp

θp − 1
xt
zt
, (A-9)

where xt can be written recursively as

xt = C−1t YtMCt + ξpβEtπ
θp
t+1xt+1, (A-10)

while zt can be written as
zt = C−1t Yt + ξpβEtπ

θp−1
t+1 zt+1, (A-11)

where πt = Pt/Pt−1.
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Finally, the aggregate price level Pt =
(∫ 1

0
P
1−θp
j,t dj

)1/(1−θp)
evolves according to

Pt =
[
ξpP

1−θp
t−1 +

(
1− ξp

)
P
∗1−θp
t

]1/(1−θp)
, (A-12)

that is the price level is just a weighted average of the last period’s price level and the price set by firms
adjusting in the current period. This equation can be rewritten as follows:

1 = ξpπ
θp−1
t +

(
1− ξp

)
(p∗t )

1−θp . (A-13)

2 Households

The representative household chooses Ct, Bt, Nt, It and Kt+1 so as to maximize the following lifetime
utility subject to a sequence of flow budget constraints:

E0

∞∑
t=0

βt
(
logCt − µn

Nt
1+φ

1 + φ

)
, φ, µn > 0 and 0 < β < 1, (A-14)

PtCt +R
−1
t Bt+1 = Bt +WtNt +Dt +R

K
t Kt − PtIt − Tt, (A-15)

where physical capital accumulates according to

Kt+1 = (1− δ)Kt + µt

(
1− S

(
It
It−1

))
It, (A-16)

with S
(

It
It−1

)
= γI

2

(
It
It−1
− gK

)2
.

The first-order conditions with respect to Ct, Bt, Nt, It and Kt+1 that solve the consumer’s problem
can be written as

C−1t = λt, (A-17)

1

Rt
= βtEt

Pt
Pt+1

λt+1
λt

, (A-18)

µnNt
φ = λt

Wt

Pt
, (A-19)

−λt + ζtµt − ζtµt
γI
2

(
It
It−1

− gK
)2
− ζtµtγI

(
It
It−1

− gK
)

It
It−1

+ (A-20)

+βEtζt+1µt+1γI

(
It+1
It
− gK

)
I2t+1
I2t

= 0,

βEtλt+1R̃
k
t+1 + βEtλt+1ζt+1(1− δ)− ζt = 0, (A-21)

where λt denotes the Lagrangian multiplier associated to the flow budget constraint expressed in real
terms (A-15), ζt is the Lagrangian multiplier associated to the accumulation of physical capital (A-16)
and R̃kt+1 = RKt /Pt.
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Let define Tobin’s q as qt =
ζt
λt
, which measures the relative marginal value of installed capital with

respect to consumption, hence (A-20) and (A-21) can be expressed as

1 = qtµt

[
1− γI

2

(
It
It−1

− gK
)2
− γI

(
It
It−1

− gK
)

It
It−1

]
+ (A-22)

+βEtqt+1
λt+1
λt

µt+1γI

(
It+1
It
− gK

)
I2t+1
I2t

,

qt = βEt
λt+1
λt

[
R̃kt+1 + qt+1(1− δ)

]
. (A-23)

3 Market Clearing

In equilibrium factor and good markets clear, hence the following conditions are satisfied for all t: Nt =
1∫
0

Nj,tdj, Kt =

1∫
0

Kj,tdj and Yt = Dp,t

1∫
0

Yj,t, where using (A-1) aggregate production is found to be:

Yt = AtKtN
α
t (Dp,t)

−1
, (A-24)

where it is easy to see that Dp,t is a measure of price dispersion, Dp,t =

1∫
0

(
Pj,t
Pt

)−θp
dj, evolving according

to a non-linear first-order difference equation:

Dp,t =
(
1− ξp

)
p
∗−θp
t + ξpπ

θp
t Dp,t−1. (A-25)

The resource constraint is
Yt = Ct + It +Gt. (A-26)

4 Stationary Model

In this economy a number of variables, such as output, consumption etc. will not be stationary along the
balanced-growth path. We therefore perform a change of variables, so as to obtain a set of equilibrium
conditions that involve only stationary variables. We note that non stationary variables at time t are
cointegrated with Kt, while the same variables at time t + 1 are cointegrated with Kt+1. We divide
variables by the appropriate cointegrating factor and denote the corresponding stationary variables with
lowercase letters. Equations (A-9), (A-13), (A-25), are already expressed in terms of stationary variables.
Labor and capital demands (A-2) and (A-3) are now expressed as

R̃Kt = (1− α)MCtyt, (A-27)

wt = αMCt
yt
Nt
, (A-28)
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where y = Y/K and w = W/(PK). In terms of stationary variables the price related equations (A-10)
and (A-11) are

xt = c−1t ytMCt + ξpβEtπ
θ
t+1xt+1, (A-29)

zt = c−1t yt + ξpβEtπ
θ−1
t+1 zt+1. (A-30)

The Euler equation (A-18), given (A-17), can be expressed as

c−1t = βEtRt (ct+1gk,t+1)
−1 1

πt+1
, (A-31)

where c = C/K and gk,t+1 = Kt+1/Kt.
The labor supply (A-19) can be written as

wt = µnctN
φ
t . (A-32)

Conditions (A-22) and (A-23) become

c−1t qt = βEt (ct+1gk,t+1)
−1
[
R̃kt+1 + qt+1(1− δ)

]
, (A-33)

1 = qtµt

[
1− γI

2

(
it
it−1

gk,t − gk
)2
− γI

(
it
it−1

gk,t − gk
)

it
it−1

gk,t

]
+ (A-34)

+βEtqt+1 (ct+1gk,t+1)
−1
ctµt+1γI

(
it+1
it

gk,t+1 − gk
)(

it+1
it

gk,t+1

)2
.

The capital accumulation equation (A-16) becomes

gk,t+1 = (1− δ) + µt

[
1− γI

2

(
it
it−1

gk,t − gk
)2]

it.

The production function (A-24) is simply

yt = AtN
α
t (Dp,t)

−1
. (A-35)

Finally, the resource constraint of the economy (A-26) in stationary terms is

yt = ct + it + gt, (A-36)

where gt = Gt/Kt.
The competitive equilibrium of the economy under study can now be formally defined.

Definition: A stationary competitive equilibrium is a sequence of allocations and prices {ct, it,
gk,t+1, Nt, yt, R̃Kt , MCt, wt, πt, Dp,t, p

∗
t , xt, zt}∞t=0 that remain bounded in some neighborhood around the

deterministic steady state and satisfy equations (A-9), (A-13), (A-25), (A-27)-(A-36), given a sequence of
nominal interest rate {Rt}∞t=0, initial value for {Dp,t−1, gK,t} and a set of exogenous stochastic processes
{At, µt, gt}∞t=0.

5



5 Model Solution

The stationarized model is solved by using a ‘pure’perturbation method which amounts to a second-
order Taylor approximation of the model around its deterministic steady state.1 Notably, second-order
approximations are more accurate and allow us to account for the effects of uncertainty.2

To study the effects of uncertainty on long-run growth (and inflation) under different monetary policy
rules, we have used the theoretical means of output growth produced by the model for various sources
of uncertainty. Since starting from a solution at second-order approximation, there is no closed-form
solution for unconditional moments, as common practice, we report a second order approximation of
these moments.3

6 Inflation and Growth at Business Cycle Frequencies

In Table A-1 we report the correlation between inflation and output growth at cyclical frequencies for
the four interest rate rules considered in the paper. Clearly, the model displays a positive correlation
between these two variables accounting for the fact that, in the absence of cost-push shock, inflation
tends to increase in booms and fall in recessions.

Table A-1: Correlation between Inflation and Output Growth under All Sources of Uncertainty

SIT WIT TR TRS
0.4833 0.4400 0.4156 0.6574

1See Judd (1998) and Schmitt-Grohé and Uribe (2004).
2The model has been solved in Dynare. For details, see http://www.cepremap.cnrs.fr/dynare/ and Adjemian et al.

(2010).
3Dynare calculates theoretical moments for all the endogenous variables using the approximation method of Kim et al.

(2008).
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