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Online Appendix A

This Appendix reports the equilibrium conditions of the two growth models, where non-stationary
variables are expressed in efficiency units. Table A-1 summarizes the equilibrium conditions of the
endogenous growth model, while Table A-2 reports those referring to the exogenous growth model.
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Table A-1: Endogenous Growth Model in Efficiency Units
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Table A-2: Exogenous Growth Model in Efficiency Units
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2 (ΠY,t − 1)2 yt + γM

2 (ΠM,t − 1)2Mt

yt = A
1
v
t

[
1
pMt
MCt(1− v)

] 1−v
v
k1−α
t Nα

t

Mt =
[

1
pMt
MCt(1− v)At

] 1
v
k1−α
t Nα

t

wt = αvMCt
yt
Nt

RKt = (1− α) vMCt
yt
kt

kt+1gZ = (1− δ) kt + it

Et
ΛRt,t+1

ΠY,t+1
= 1

Rt

1 = EtΛ
R
t,t+1

(
Rkt+1 + 1− δ

)
µnN

ϕ
t ct = wt

θY − 1− θYMCt + γY (ΠY,t − 1)ΠY,t − γY βEt ct
ct+1

(ΠY,t+1 − 1) ΠY,t+1
yt+1

yt
= 0

pMt = pMt−1

Π
M,t

Π
P,t

(θM − 1) pMt − θM + γM
(
ΠM,t − 1

)
ΠM,t − γMEtΛRt,t+1

(
ΠM,t+1 − 1

)
ΠM,t+1

Mt+1

Mt
= 0

ΛRt,t+1 = β ct
gZct+1

4



Online Appendix B

Welfare Measure in Stationary Variables

The lifetime utility function of the typical individual (14) can be written in recursive form as

Vt = logCt − µn
Nt

1+ϕ

1 + ϕ
+ βEtVt+1. (A-1)

By adding and subtracting 1
1−β logZt and β

1−β logZt+1 we get

Vt = logCt − µn
Nt

1+ϕ

1 + ϕ
+ (A-2)
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β
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β
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logZt+1 + βEtVt+1.

where we have used the fact that 1
1−β logZt = logZt + β

1−β logZt. Collecting terms and defining
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)
. (A-3)

Ramsey Monetary Policy in the Endogenous Growth Model

We start by considering the Ramsey problem in the endogenous growth model. For the sake of
simplicity we solve the Ramsey problem starting from the constraints already expressed in efficiency
units. Having reduced the number of constraints of Table A-1, the Lagrangian representation of
the Ramsey problem is found to be:
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+λ9,t

(
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Π
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,

where {Λt}∞t=0 = {λ1,t, λ2,t, λ3,t, λ4,t, λ5,t, λ6,t, λ7,t, λ8,t, λ9,t, λ10,t, λ11,t}∞t=0 denote the Lagrange
multipliers of the constraints and {dt}∞t=0 = {ct, gZ,t+1, kt+1, Mt, MCt, Nt, p

M
t , st, Vt, yt, ΠM,t,

ΠY,t}∞t=0. Notice that in the absence of monetary frictions, the nominal interest rate only enters
the consumption Euler equation, βEt

ct
ΠY,t+1gZ,t+1ct+1

= 1
Rt
, that is why this last condition can be

omitted from the set of constraints. It is the intertemporal Euler equation that determines the
nominal rate of interest Rt. In what follows we will only focus on the first order conditions with
respect to inflation.

We start by considering the special case in which γM = 0. In the case of flexible prices in the
intermediate good sector pMt is constant and equal to θM

θM−1 , while ΠM,t is always equal to ΠY,t. At
the optimum, the following first-order condition with respect to ΠY,t must hold:

−λ1,tγY (ΠY,t − 1) yt + (λ4,t − λ4,t−1) γY
yt
ct

(2ΠY,t − 1) = 0, (A-4)

where the first term reflects the marginal effects of inflation on welfare deriving from the negative
effects of nominal adjustment costs on the resource constraint, while the second term measures the
marginal benefits of smoothing out price changes. Clearly, in steady state, the above condition boils
down to λ1γY (ΠY − 1) y = 0. Since λ1 > 0, the optimal steady state inflation rate is then found to
be equal to zero, i.e. ΠY = 1. In steady state the effects of intertemporal cost smoothing vanish,
thus the Ramsey planner cannot use inflation as a device to reduce the markup. As discussed in
the main text, in this case the endogenous growth model replicates the standard prediction of the
baseline NK model, namely that the optimal long-run inflation rate is zero.

In the general case, instead, the relevant first-order conditions describing the optimal time
paths of inflation for both sectors are found to be:

−λ1,tγY (ΠY,t − 1) yt + λ4,tγY
yt
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Imposing the steady state and combining the two above conditions we obtain
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c

+ (A-7)
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)
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where we have used the fact ΠY = ΠM . The first term measures the marginal negative effect of
inflation on welfare through the resource constraint, the second term reflects the negative effects
of inflation deriving from a lower firm value, while the last term refers to marginal benefits of
smoothing out price changes between two consecutive periods. Clearly, this last term does not
vanish at zero inflation.

Ramsey Monetary Policy in the Exogenous Growth Model

Starting from the exogenous growth model expressed in efficiency units of Table A-2 and reducing
the number of constraints by substitution, the Ramsey problem can be written as:

Min
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,

where {Λt}∞t=0 = {λ1,t, λ2,t, λ3,t, λ4,t, λ5,t, λ6,t, λ7,t, λ8,t}∞t=0 denote the Lagrange multipliers of
the constraints and {dt}∞t=0 = {ct, kt+1,Mt,MCt, Nt, p

M
t , yt, ΠM,t, ΠY,t}∞t=0.

Proceeding as done in the previous section, we observe that, in the special case of flexible
prices in the intermediate good sector, in steady state the first order condition with respect to ΠY

becomes λ1
γY
2 (ΠY − 1) y = 0, implying the optimality of zero inflation. In the general case, the

first order conditions with respect to ΠY,t and ΠM,t, computed in steady state, can be combined to
obtain:

−λ1 (γMM + γY Y ) (ΠY − 1)− λ6γM (ΠY − 1)M
gZ
c

+ λ11γM
gZ
c

(
1− 1

gZ

)
(2ΠY − 1)M = 0,

(A-8)
where the last term representing the marginal benefits of intertemporal smoothing price changes
does not vanish at zero inflation, opening up to the possibility of exploiting inflation as device to
reduce markups.

Inflation and Growth

In this section we show the relationship between inflation and growth in the model of Table A-
1. Using the baseline calibration illustrated in Section 3, we compute the steady state different
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inflation rates and for three different parametrizations of the nominal adjustment cost on price.
Figure B-1 presents the results. The vertical continuous lines refer to the optimal trend inflation
stemming from the Ramsey policy.
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Figure B-1: Growth and Inflation in Steady State - Decentralized Equilibrium (Annual Rates %)
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Note: The figure shows the relationship between long-run growth and trend inflation in the benchmark case (γM , γY > 0), in the case of nominal

rigidities only in the final good sector (γM = 0, γY > 0) and in the case of nominal rigidities only in the intermediate good sector (γM > 0,

γY = 0). Growth and inflation are both expressed as annual rates in %. Vertical lines refer to the optimal trend inflation under Ramsey policy.
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Online Appendix C

The Endogenous Growth Model under Calvo Pricing

In this Appendix we modify the NK model with endogenous growth model presented in the main
text by modelling price rigidities à la Calvo instead that à la Rotemberg.

We assume that each firm i of the final good sector may reset its price with probability 1−κY
in any given period, independently of the time elapsed since the last adjustment. Let P̂t denote the
price set in period t by firms resetting their price in that period, then the optimal pricing condition
can be written as:

P̂t
Pt

=
θY

θY − 1

Et
∑∞

k=0 κ
k
Y ΛRt,t+kMCt+k

(
Pt+k
Pt

)θY
Yt+k

Et
∑∞

k=0 κ
k
Y ΛRt,t+k

(
Pt+k
Pt

)θY −1
Yt+k

, (A-9)

where ΛRt,t+k = βk
λt+k
λt

. The optimal condition (A-9) can be simplified and then re-written as

p̂Yt =
θY

θY − 1

Υt

Ξt
, (A-10)

where p̂Yt = P̂t
Pt

and

Υt =
yt
ct
MCt + βκYEtΠ

θY
Y,t+1Υt+1, (A-11)

Ξt =
yt
ct

+ βκYEtΠ
θY −1
Y,t+1Ξ+1, (A-12)

where we have used the fact that λt = 1
Ct

and then expressed Yt and Ct in efficiency units as
yt = Yt/Zt and ct = Ct/Zt.

The aggregate price dynamics are described by

1 = κY ΠθY −1
Y,t + (1− κY )

(
p̂Yt
)1−θY

, (A-13)

while price dispersion ∆Y
t =

∫ 1
0

(
PYi,t
PYt

)−θY
di evolves as follows

∆Y
t = (1− κY )

(
p̂Yt
)−θY

+ κY ΠθY
Y,t∆

Y
t−1. (A-14)

Notably price dispersion is generated by Calvo price staggering and generates a wedge between
aggregate output and factor inputs making aggregate production less efficient. In equilibrium, in
fact, the aggregate production function expressed in efficiency units is

yt =
1

∆Y
t

A
1
v
t

[
1

pMt
MCt(1− v)

] 1−v
v

kt
1−αNα

t , (A-15)

where ∆Y
t ≥ 1. Clearly, the higher is price dispersion the more inputs are needed to produce

a given level of output. Under Calvo pricing then trend inflation generates an efficiency loss.
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However, trend inflation is able to reduce the average markup, decreasing the inefficiency loss due
to monopolistic competition.

A similar problem is faced by the typical firm belonging to the intermediate good sector, where
each firm j may reset its price with probability 1 − κM in any given period, independently of the
time elapsed since the last adjustment. Let P̂Mt denote the price set in period t by firms able to
revise their price in that period. The optimal pricing condition of the generic firm able to reset its
price at time t can then be written as

P̂Mt
PMt

=
θM

θM − 1

Et
∑∞

k=0 (κMφ)k ΛRt,t+k

(
PMt+k
PMt

)θM
Mt+k

Et
∑∞

k=0 (κMφ)k ΛRt,t+kp
M
t+k

(
PMt+k
PMt

)θM−1

Mt+k

, (A-16)

where PMt =

[
1
Zt

∫ Zt
0

(
PMj,t

)1−θM
dj

] 1
1−θM

, while Mt = Gt/Z

θM
θM−1

t is the average level of production

of intermediate good producers.
The above condition can be simplified and then re-written as follows

p̂Mt =
θM

θM − 1

Θt

Ψt
, (A-17)

where p̂Mt =
P̂Mt
PMt

and

Θt =
Mt

ct
+ β

κMφ

gZ,t+1
EtΠ

θM
M,t+1Θt+1, (A-18)

Ψt =
Mt

ct
pMt + β

κMφ

gZ,t+1
EtΠ

θM−1
M,t+1Ψt+1. (A-19)

Note that pMt denotes the average markup prevailing in the intermediate good sector.
The aggregate price dynamics are described by

1 = κMΠθM−1
M,t + (1− κM )

(
p̂Mt
)1−θM

, (A-20)

while price dispersion ∆M
t = 1

Zt

∫ Zt
0

(
PMj,t
PMt

)−θM
dj evolves as follows

∆M
t = (1− κM )

(
p̂Mt
)−θM

+ κMΠθM
M,t∆

M
t−1, (A-21)

where we have implicitly assumed that in each period the price dispersion on the fraction of obsolete
varieties, new varieties and surviving varieties are equal.

Given the roundabout technology of the intermediate good sector, in equilibrium the quantity
of final output used to produce intermediate goods amounts to∫ Zt

0
Yj,tdj =

∫ Zt

0
Mj,tdj = MtZt∆

M
t . (A-22)
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It follows that price dispersion in the intermediate good sector implies a waste of the final output.
The equilibrium conditions of the model under Calvo pricing are summarized in Table C-1,

where all non-stationary variables are expressed in efficiency units.
The Calvo pricing gives rise to price dispersion in both sectors, creating an inefficiency loss on

the supply side of the economy (i.e. in both sectors more inputs are needed to produce one unit of
output). Price dispersion is eliminated at zero inflation.

The Exogenous Growth Model Growth Model under Calvo Pricing

The NK model with exogenous growth presented in the main text is modified by introducing price
rigidities à la Calvo. By making the same assumptions formulated in the previous section with
regard to the endogenous growth model, the equilibrium conditions of the exogenous growth model
under Calvo pricing can be summarized as in Table C-2.

Optimal Trend Inflation under Calvo Pricing

Endogenous Growth

For the endogenous growth model under the Calvo pricing assumption the Lagrangian representa-
tion of the Ramsey problem can be written as

Min
{Λt}∞t=0

Max
{dt}∞t=0

E0

{ ∞∑
t=0
βt
[(

log ct − µnN
1+ϕ
t

1+ϕ + β
1−β log gZ,t+1

)
+

+λ1,t

[
yt − ct − kt+1gZ,t+1 + (1− δ) kt − st − cGt yt −∆M

t Mt

]
+

+λ2,t

(
A

1
v
t

[
1
pMt
MCt(1− v)

] 1−v
v
kt

1−αNα
t − yt∆Y

t

)
+

+λ3,t

[
β
(

(1− α) µnNt+1
ϕ+1

αkt+1
+ 1−δ

ct+1

)
− gZ,t+1

ct

]
+

+λ4,t

(
ξ̂sεt + φ− gZ,t+1

)
+

+λ5,t

(
−1
ξ̂
s1−ε
t

gZ,t+1

ct
+ βEt

Vt+1

ct+1

)
+

+λ6,t

((
1
pMt
MCt(1− v)At

) 1
v
kt

1−αNα
t −Mt

)
+

+λ7,t

(
−Vt

gZ,t+1

ct
+ (pMt − 1)Mt

gZ,t+1

ct
+ φβEt

Vt+1

ct+1

)
+

+λ8,t

(
ctµnNtϕ+1

αvyt
−MCt

)
+

+λ9,t

(
pMt

Π
Y,t

Π
M,t
− pMt−1

)
+

+λ10,t

(
gZ,t+1Θt −

gZ,t+1

ct
Mt − βκMφEtΠθM

M,t+1Θt+1

)
+

+λ11,t

(
gZ,t+1Ψt −

gZ,t+1

ct
Mtp

M
t − βκMφEtΠ

θM−1
M,t+1Ψt+1

)
+

+λ12,t

(
1− κM (ΠM,t)

θM−1 − (1− κM )
(
p̂Mt
)1−θM)+

+λ13,t

(
∆M
t − (1− κM )

(
p̂Mt
)−θM − κMΠθM

M,t∆
M
t−1

)
+

+λ14,t

(
p̂Mt − θM

θM−1
Θt
Ψt

)
+
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+λ15,t

(
Υt − yt

ct
MCt − βκYEtΠθY

Y,t+1Υt+1

)
+

+λ16,t

(
Ξt − yt

ct
− βκYEtΠθY −1

Y,t+1Ξt+1

)
+

+λ17,t

(
1− κY (ΠY,t)

θY −1 − (1− κY )
(
p̂Yt
)1−θY )+

+λ18,t

(
∆Y
t − (1− κY )

(
p̂Yt
)−θY − κY ΠθY

Y,t∆
Y
t−1

)
+

+ λ19,t

(
p̂Yt − θY

θY −1
Υt
Ξt

)]}
,

where {Λt}∞t=0 = {λ1,t, λ2,t, λ3,t, λ4,t, λ5,t, λ6,t, λ7,t, λ8,t, λ9,t, λ10,t, λ11,t, λ12,t, λ13,t, λ14,t, λ15,t,
λ16,t, λ17,t, λ18,t, λ19,t}∞t=0 denote the Lagrange multipliers of the constraints and {dt}∞t=0 = {ct,
gZ,t+1, kt+1, Mt, MCt, Nt, p

M
t , st, Vt, yt, ΠM,t, ΠY,t,∆

Y
t , p̂

Y
t , Ξt,Υt,∆

M
t , p̂

M
t ,Θt,Ψt}∞t=0. Observe

that also in this case we can omit the consumption Euler equation from the set of constraints.
We now show that in the special case in which κM = 0, that is under flexible prices in the

intermediate good sector, the optimal level of trend inflation is zero. We proceed as in Schmitt-
Grohé and Uribe (2010) and show that in steady state the first-order conditions with respect to
ΠY,t and p̂Yt are not independent when ΠY,t = 1.

Consider the first-order conditions with respect to ΠY,t, p̂
Y
t , Υt and Ξt assuming that κM = 0,

so that ΠM,t = ΠY,t and pMt = θM
θM−1 :

−λ15,t−1θY ΠθY −1
Y,t Υt − λ16,t−1 (θY − 1) ΠθY −2

Y,t Ξt+ (A-23)

−λ17,t (θY − 1) (ΠY,t)
θY −2 − λ18,tθY (ΠY,t)

θY −1 ∆Y
t−1 = 0,

λ17,t (θY − 1) (1− κY )
(
p̂Yt
)−θY

+ λ18,tθY (1− κY )
(
p̂Yt
)−θY −1

+ λ19,tp̂
Y
t = 0, (A-24)

λ15,t − λ15,t−1κY ΠθY
Y,t − λ19,t

θY
θY − 1

1

Ξt
= 0, (A-25)

λ16,t − λ16,t−1κY ΠθY −1
Y,t + λ19,t

θY
θY − 1

Υt

Ξ2
t

= 0. (A-26)

Assume now that in steady state trend inflation is zero, that is ΠY = 1, thus p̂Y = 1 = θY
θY −1

Υ
Ξ and

∆Y = 1. The above conditions boil down to

λ15θY Υ + λ16 (θY − 1) Ξ + λ17 (θY − 1) + λ18θY = 0, (A-27)

λ17 (θY − 1) (1− κY ) + λ18θY (1− κY ) + λ19 = 0, (A-28)

λ15 − λ15κY − λ19
θY

θY − 1

1

Ξ
= 0, (A-29)

λ16 − λ16κY + λ19
θY

θY − 1

Υ

Ξ2
= 0. (A-30)

Conditions (A-29) and (A-30) can then be combined to obtain:

λ16 = −λ15
θY − 1

θY
,

λ19 = λ15 (1− κY ) Υ.
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Using the above results into (A-27) and (A-28) it can be easily shown that both conditions
boil down to Υλ15 +λ17 (θY − 1)+λ18θY = 0, therefore when in the intermediate good sector prices
are flexible zero trend inflation is optimal.

Consider now the case of flexible prices in the final good sector (i.e. κY = 0), but of sticky
prices in the intermediate good sector. The first-order conditions with respect to ΠM,t, p̂

M
t , Θt and

Ψt are, respectively:

−λ10,t−1φθMΠθM−1
M,t Θt − λ11,t−1φ (θM − 1) ΠθM−2

M.t Ψt+ (A-31)

−λ12,t (θM − 1) ΠθM−2
M,t − λ13,tθMΠθM−1

M,t ∆M
t−1 = 0,

λ12,t(1− κM )(θM − 1)
(
p̂Mt
)−θM

+ λ13,tθM (1− κM )
(
p̂Mt
)−θM−1

+ λ14,t = 0, (A-32)

λ10,tgZ,t+1 − λ10,t−1κMφΠθM
M,t − λ14,t

θM
θM − 1

1

Ψt
= 0, (A-33)

λ11,tgZ,t+1 − λ11,t−1κMφΠθM−1
M,t + λ14,t

θM
θM − 1

Θt

Ψ2
t

= 0. (A-34)

Assume that in steady state trend inflation is zero, that is ΠM = 1, the p̂M = 1 = θM
θM−1

Θ
Ψ and

∆M = 1. The above conditions become:

−λ10φθMΘ− λ11φ (θM − 1) Ψ− λ12 (θM − 1)− λ13θM = 0, (A-35)

λ12(1− κM )(θM − 1) + λ13θM (1− κM ) + λ14 = 0, (A-36)

λ10gZ − λ10κMφ− λ14
θM

θM − 1

1

Ψ
= 0, (A-37)

λ11gZ − λ11κMφ+ λ14
θM

θM − 1

Θ

Ψ2
= 0. (A-38)

The last two conditions can be combined to obtain:

λ11 = −λ10
θM − 1

θM
,

λ14 = λ10 (gZ − κMφ) Θ

Substituting these results into (A-35) and (A-36) it can be easily verified that these conditions
are independent, implying that zero trend inflation cannot be the optimal solution when prices are
sticky in the intermediate good sector.

Exogenous Growth

For the exogenous growth model under the Calvo pricing assumption the Lagrangian representation
of the Ramsey problem can be expressed as

Min
{Λt}∞t=0

Max
{dt}∞t=0

E0

{ ∞∑
t=0
βt
[(

log ct − µnN
1+ϕ
t

1+ϕ + β
1−β log gZ

)
+

+λ1,t

[
yt − ct − kt+1gZ + (1− δ) kt − cGt yt −∆M

t Mt

]
+
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+λ2,t

(
A

1
v
t

[
1
pMt
MCt(1− v)

] 1−v
v
kt

1−αNα
t − yt∆Y

t

)
+

+λ3,t

[
β
(

(1− α) µnNt+1
ϕ+1

αkt+1
+ 1−δ

ct+1

)
− gZ,t+1

ct

]
+

+λ4,t

((
1
pMt
MCt(1− v)At

) 1
v
kt

1−αNα
t −Mt

)
+

+λ5,t

(
ctµnNtϕ+1

αvyt
−MCt

)
+

+λ6,t

(
pMt

Π
Y,t

Π
M,t
− pMt−1

)
+

+λ7,t

(
gZΘt − gZ

ct
Mt − βκMφEtΠθM

M,t+1Θt+1

)
+

+λ8,t

(
gZΨt − gZ

ct
pMt Mt − βκMφEtΠθM−1

M,t+1Ψt+1

)
+

+λ9,t

(
1− κM (ΠM,t)

θM−1 − (1− κM )
(
p̂Mt
)1−θM)+

+λ10,t

(
∆M
t − (1− κM )

(
p̂Mt
)−θM − κMΠθM

M,t∆
M
t−1

)
+

+λ11,t

(
p̂Mt − θM

θM−1
Θt
Ψt

)
+

+λ12,t

(
Υt − 1

ct
MCtyt − βκYEtΠθY

Y,t+1Υt+1

)
+

+λ13,t

(
Ξt − 1

ct
yt − βκYEtΠθY −1

Y,t+1Ξt+1

)
+

+λ15,t

(
1− κY ΠθY −1

Y,t − (1− κY )
(
p̂Yt
)1−θY )+

+λ15,t

(
∆Y
t − (1− κY )

(
p̂Yt
)−θY − κY ΠθY

Y,t∆
Y
t−1

)
+

+ λ16,t

(
p̂Yt − θY

θY −1
Υt
Ξt

)]}
where {Λt}∞t=0 = {λ1,t, λ2,t, λ3,t, λ4,t, λ5,t, λ6,t, λ7,t, λ8,t, λ9,t, λ10,t, λ11,t, λ12,t, λ13,t, λ14,t,
λ15,t, λ16,t}∞t=0 denote the Lagrange multipliers of the constraints and {dt}∞t=0 = {ct, kt+1, Mt,
MCt, Nt, p

M
t , yt, ΠM,t, ΠY,t, ∆Y

t , p̂
Y
t , Ξt, Υt, ∆M

t , p̂
M
t , Θt, Ψt}∞t=0.

Proceeding as done in the previous section, it is straightforward to show that when prices are
sticky only in the final good sector, optimal trend inflation will be equal to zero. On the other
hand, when prices are sticky in the intermediate good sector zero inflation cannot be the optimal
solution in steady state.

Optimal Trend Inflation: Numerical Results

Given the baseline parametrization of Section 3, we compute the steady state solution of the
Ramsey problem and quantify the optimal long-run inflation rate for both growth models under
the Calvo pricing hypothesis. For a degree of price stickiness consistent with the one assumed
under Rotemberg pricing, that is κY = κM = 0.75, we find that the Ramsey optimal inflation rate
is 0.144% per year in the endogenous growth model and 0.082% in the exogenous growth model.

Figure C-1 plots optimal trend inflation for different parametrizations of both models. We
observe that, consistently with the findings obtained under Rotemberg pricing, a higher degree
of price rigidities in the intermediate good sector implies a higher trend inflation, while a higher
degree of nominal rigidities in the final good sector implies a lower optimal inflation rate.
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Consider now the role played by elasticity ε that determines the marginal return of R&D
spending. We observe that under Calvo pricing the optimal level of trend inflation declines with it,
contrary to the result of obtained under costly price adjustment. In this case the Ramsey planner
will use inflation as a device to reduce average markups and increase the scale of production
especially when ε is low. By contrast, when ε is high it will be optimal to reduce price dispersion
and keep markups high. Finally, we observe that with staggered prices the effects of the obsolescence
rate on the optimal inflation rate are negligible.

On the one hand our robustness check confirms our main result regarding the optimality
of positive trend inflation, on the other hand the kind of inefficiency induced by Calvo pricing,
through price dispersion, seems to interact differently with the underlying market structure and
growth engine. The difference between the two pricing schemes is worth to be investigated, but we
leave this aspect for future research.

Inflation and Growth under Calvo Pricing

In this appendix we show the steady state relationship between inflation and growth in the model
of Table C-1 for three different parametrizations of nominal rigidities. Figure C-2 presents the
results. The vertical continuous lines refer to the optimal trend inflation stemming from the Ramsey
policy under Calvo pricing. We observe that contrary to the results obtained under costly price
adjustment, the relationship between growth and inflation is hump shaped in the presence of
nominal rigidities in the final good sector.
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Table C-1: Endogenous Growth Model under Calvo Pricing

yt = ct + it + st + cGt yt + ∆M
t Mt

yt = 1
∆Y
t
A

1
v
t

[
1
pMt
MCt(1− v)

] 1−v
v
k1−α
t Nα

t

Mt =
[

1
pMt
MCt(1− v)At

] 1
v
k1−α
t Nα

t

wt = αvMCt
yt
Nt

RKt = (1− α) vMCt
yt
kt

kt+1gZ,t+1 = (1− δ) kt + it

Et
ΛRt,t+1

ΠY,t+1
= 1

Rt

1 = EtΛ
R
t,t+1

(
Rkt+1 + 1− δ

)
µnN

ϕ
t ct = wt

p̂Yt = θY
θY −1

Υt
Ξt

Υt = yt
ct
MCt + βκYEtΠ

θY
Y,t+1Υt+1

Ξt = yt
ct

+ βκYEtΠ
θY −1
Y,t+1Ξ+1

1 = κY ΠθY −1
Y,t + (1− κY )

(
p̂Yt
)1−θY

∆Y
t = (1− κY )

(
p̂Yt
)−θY + κY ΠθY

Y,t∆
Y
t−1

gZ,t+1 = ξtst + φ

ξt = ξ̂ (1/st)
1−ε

Vt = (pMt − 1)Mt − γM
2

(
ΠM,t − 1

)2
Mt + φEtΛ

R
t,t+1Vt+1

pMt = pMt−1

Π
M,t

Π
P,t

p̂Mt = θM
θM−1

Θt
Ψt

Θt = Mt
ct

+ β κMφ
gZ,t+1

EtΠ
θM
M,t+1Θt+1

Ψt = Mt
ct
pMt + β κMφ

gZ,t+1
EtΠ

θM−1
M,t+1Ψt+1

1 = κMΠθM−1
M,t + (1− κM )

(
p̂Mt
)1−θM

∆M
t = (1− κM )

(
p̂Mt
)−θM + κMΠθM

M,t∆
M
t−1

1/ξt = Et
(
ΛRt,t+1Vt+1

)
ΛRt,t+1 = β ct

gZ,t+1ct+1
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Table C-2: Exogenous Growth Model under Calvo Pricing

yt = ct + it +Mt + st + cGt yt

yt = A
1
v
t

[
1
pMt
MCt(1− v)

] 1−v
v
k1−α
t Nα

t

Mt =
[

1
pMt
MCt(1− v)At

] 1
v
k1−α
t Nα

t

wt = αvMCt
yt
Nt

RKt = (1− α) vMCt
yt
kt

kt+1gZ = (1− δ) kt + it

Et
ΛRt,t+1

ΠY,t+1
= 1

Rt

1 = EtΛ
R
t,t+1

(
Rkt+1 + 1− δ

)
µnN

ϕ
t ct = wt

p̂Yt = θY
θY −1

Υt
Ξt

Υt = yt
ct
MCt + βκYEtΠ

θY
Y,t+1Υt+1

Ξt = yt
ct

+ βκYEtΠ
θY −1
Y,t+1Ξ+1

1 = κY ΠθY −1
Y,t + (1− κY )

(
p̂Yt
)1−θY

∆Y
t = (1− κY )

(
p̂Yt
)−θY + κY ΠθY

Y,t∆
Y
t−1

pMt = pMt−1

Π
M,t

Π
P,t

p̂Mt = θM
θM−1

Θt
Ψt

Θt = ψtMt + β κMgZ EtΠ
θM
M,t+1Θt+1

Ψt = ψtp
M
t Mt + βκM

gZ
EtΠ

θM−1
M,t+1Ψt+1

1 = κMΠθM−1
M,t + (1− κM )

(
p̂Mt
)1−θM

∆M
t = (1− κM )

(
p̂Mt
)−θM + κMΠθM

M,t∆
M
t−1

ΛRt,t+1 = β ct
gZct+1
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Figure C-1: Annual Optimal Trend Inflation for Different Model Parametrizations under Calvo
Pricing (%)
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Note: The figure shows optimal trend inflation (the annual inflation rate in %) in the two growth models for different parametrizations under the

assumption of Calvo pricing, where κM is the degree of nominal rigidities in the intermediate good sector, κY is the degree of nominal rigidities

in the final good sector, ε measures the elasticity of new intermediate goods with respect to R&D and φ is the survival rate of intermediate good

producers. Vertical lines refer to the baseline calibration.
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Figure C-2: Growth and Inflation in Steady State under Calvo Pricing- Decentralized Equilibrium
(Annual Rates %)
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Note: The figure shows the relationship between long-run growth and trend inflation in the benchmark case (κM , κY > 0), in the case of nominal

rigidities only in the final good sector (κM = 0, κY > 0) and in the case of nominal rigidities only in the intermediate good sector (κM > 0,

kappaY = 0). Growth and inflation are both expressed as annual rates in %. Vertical lines refer to the optimal trend inflation under Ramsey

policy.
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Online Appendix D

Dynamics under Taylor Rule

In this Appendix we show the impulse response functions to technology and public spending shocks
under the assumption that monetary policy is conducted according to a standard Taylor rule

Rt
R

=

(
Rt−1

R

)ιR [(ΠY,t

ΠY

)ιΠY ( Yt
gZYt−1

)ιgY ]1−ιR
, (A-39)

where variables without the time subscript refer to the deterministic balanced growth path under
the Ramsey policy, while ιR, ιΠY and ιgY are policy parameters. We set ιΠY = 1.5, ιgY = 0.25 and
ιR = 0. See Figures D-1 and D-2.
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Figure D-1: Impulse Responses to a 1% Technology Shock under a Benchmark Taylor Rule
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Note: The figure shows the impulse response to a shock on At under a benchmark Taylor rule. All results are reported as percentage deviations

from the steady state, except for inflation, nominal and real interest rates, which are expressed as percentage-point deviations and for the TFP

growth which is expressed in annualized rates. Continuous lines show the impulse response functions in the endogenous growth model, while dotted

lines refer to the exogenous growth model.
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Figure D-2: Impulse Responses to a 1% Public Spending Shock under a Benchmark Taylor Rule
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The figure shows the impulse response to a shock on cGt under a benchmark Taylor rule. All results are reported as percentage deviations from

the steady state, except for inflation, nominal and real interest rates, which are expressed as percentage-point deviations and for the TFP growth

which is expressed in annualized rates. Continuous lines show the impulse response functions of the Ramsey plan in the endogenous growth model,

while dotted lines refer to the Ramsey plan in the exogenous growth model.
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Online Appendix E

In this Appendix we explore the optimal dynamic response to R&D productivity shocks in the
endogenous growth model. In particular, we assume that the coefficient ξ̂ in (11) is time varying

and follows a process of the form log ξ̂t = (1 − ρξ̂) log ξ̂ + ρξ̂ log ξ̂t−1 + εξ̂t , with 0 < ρξ̂ < 1,

εξ̂t ∼ i.i.d.N(0, σ2
ξ̂
). Figure E-1 plots the dynamic responses to a one percent positive shock on

R&D productivity under Ramsey monetary policy assuming a high autocorrelation of the shock,
namely ρξ̂ = 0.9. Also in this case the Ramsey planner tolerates temporary deviations of the price
level from its optimal long-run trend. In the final good sector markups and profits decline sharply,
while in the intermediate good sector profits increase. By using monetary policy the Ramsey
planner is able to sustain the positive effects on output and therefore to increase the market size
for innovation and innovation incentives during the periods of higher R&D productivity. However,
the response of consumption and output to this shock deserves an explanation.

We observe that consumption declines, despite this shock generates an expansion of output.
Recalling that we represent consumption in efficiency units (i.e. ct = Ct/Zt), like all non-stationary
variables of the model, consider Figure E-2, where we plot the impulse response of the growth rates
of intermediate goods, TFP, output and consumption, in response to the positive R&D productivity
shock. On impact the model generates a decline of the growth rate of consumption, despite the
sharp expansion in the growth rate of new varieties in the intermediate good sector that drives the
TFP growth rate upward and so output growth. In the absence of any adjustment costs in the
R&D sector, the TFP reaches a peak right after the positive shock. In these circumstances the
market conditions push households to slightly reduce consumption and finance R&D spending on
impact. A sort of substitution effect then prevails over the income effect.1 However, already in
the following period consumption growth rate is above its balanced growth path and only slowly
converges to it. This explain the dynamics of consumption in efficiency units of Figure E-1. Output
growth, instead, increases on impact, driven upward by the immediate increase in the TFP and
by the expansion of hours. However, already in the second period, we note a slow down of the
output growth rate. During the adjustment process we observe that output growth slowly converges
toward its balanced growth path from above.

1In the presence of adjustment costs in the R&D sector, instead, the increase in the R&D spending would be
more gradual and so the TFP growth reaction to this shock. Thus, on impact, the response of consumption would be
driven by a positive income effect, rather then by a negative substitution effect. This is in fact the kind of dynamics
we observe in response to similar shocks hitting the R&D sector in medium scale endogenous growth models featuring
Schumpeterian mechanisms and adjustment costs in R&D investments. See e.g. Cozzi et al. (2017) and Pinchetti
(2017).
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Figure E-1: Impulse Responses to a 1% R&D Productivity Shock
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Note: The figure shows the impulse response under Ramsey monetary policy to a shock on ξ̂t. All results are reported as percentage deviations

from the steady state, except for inflation, nominal and real interest rates, which are expressed as percentage-point deviations and for the TFP

growth which is expressed in annualized rates.
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Figure E-2: Impulse Responses to a 1% R&D Productivity Shock - Growth Rates (Annual Rates
%)
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Note: The figure shows the impulse response under Ramsey monetary policy to a shock on ξ̂t. All growth rates are annualized. Horizontal lines

refer to the balanced-growth-path growth rates.
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Online Appendix F

In Table 2 the welfare gains of a particular operational monetary rule relatively to a standard Taylor
rule are computed as follows. Let TR denote the Taylor rule regime (with ιΠY = 1.5, ιgY = 0.25
and ιR = 0), that is our reference policy regime, and AR denote an alternative monetary regime
(any of the other rules considered in Table 1).

Following Schmitt-Grohé and Uribe (2007), our measure of welfare is the conditional expecta-
tion of lifetime utility at time zero, that from (A-3) is

υ0 = E0

∞∑
t=0

βt

(
log ct − µn

N1+ϕ
t

1 + ϕ
+

β

1− β
log gZ,t+1

)
. (F-1)

where U (ct, Nt, gZ,t+1)=log ct−µnN
1+ϕ
t

1+ϕ + β
1−β log gZ,t+1. We also assume that at t = 0 the economy

is on its balanced growth path, that is all stationary variables of the economy are equal to their
respective steady-state values. We define υTR0 the welfare associated to reference regime TR and
υAR0 the welfare associated to the alternative regime TR. Then we have:

υTR0 = E0

∞∑
t=0

βtU
(
cTRt , NTR

t , gTRZ,t+1

)
, (F-2)

υAR0 = E0

∞∑
t=0

βtU
(
cARt , NAR

t , gARZ,t+1

)
, (F-3)

Let χ denote the welfare gain of adopting the policy regime AR instead of the policy regime TR.
In particular, χ is measured as the additional fraction of consumption that a household would be
willing to obtain to be as well off under regime TR as under the alternative monetary policy regime
AR. Then, by definition, it must be

υAR0 = E0

∞∑
t=0

βtU
(
cTRt (1 + χ), NTR

t , gTRZ,t+1

)
. (A-40)

Therefore

υAR0 − υTR0 =
1

1− β
log(1 + χ). (F-5)

The welfare gains reported in Table 1 are then computed from (F-5), using a second-order approx-
imation of welfare around the deterministic steady state. See Schmitt-Grohé and Uribe (2007) for
further details.
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Online Appendix G

In this Appendix we show the results regarding the optimal operational monetary policy rule under
the assumption that in both growth models uncertainty only comes through capital quality shocks
rather than from technological and public spending shocks. In particular, we assume that the
accumulated capital stock Kt is subject to a quality shock determining the level of effective capital
for use in production. Notably, this type of shock captures any exogenous variation in the value
of installed capital able to trigger sudden variations in its market value and changes in investment
expenditure. In DSGE models shocks on the quality of capital are used to reproduce the effects
of a recession originating from an adverse shock on asset prices. A negative shock on the quality
of capital reduces directly and simultaneously both the supply and the demand schedules of the
economy (see e.g. Gertler and Karadi 2011).

Therefore, the stock of capital held by households evolves as

Kt+1 = It + (1− δ)euK,tKt, (G-1)

where uK is the exogenous processes capturing the capital-quality shocks such that uK,t = ρKuK,t−1+
εKt , with 0 < ρK < 1, εKt ∼ i.i.d.N(0, σ2

K), while the production function becomes

Yt = A
1
v
t

[
1

pMt
MCt(1− v)

] 1−v
v

(euK,tKt)
1−α (ZtNt)

α . (G-2)

Table (G-1) reports the optimal operational monetary policy rule under the assumptions that
the only source of uncertainty of the economy is given by shocks on the quality of capital.

We observe that in this case, even in the absence of financial frictions, the optimal operational
flexible inflation targeting rule features a high reactivity to output in both growth models, contrary
to what observed when the economy is hit by technological and public spending shocks.

These results are in line with those of Ikeda and Kurozumi (2019) who find that, when the
economy is hit by financial shocks, the optimal monetary policy rule features a very vigourous
response to output growth. In their model financial frictions magnify the recessionary effects of
adverse shocks, that is why they also find sizeable welfare gains from output stabilization.
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Table G-1: Optimal Operational Monetary Policy Rules and Welfare Costs - Capital Quality Shocks

Endogenous Growth Model Exogenous Growth Model

ιΠY ιgY ιR Welfare Gain (%) ιΠY ιgY ιR Welfare Gain (%)

Optimized Rules

- Flexible Inflation Targeting 10 3.1875 0 0.4386 10 2.1875 0.6 0.3754

- Strict Inflation Targeting - ιY = 0 10 - 0 0.4228 10 - 0 0.3714

- Nominal GDP Growth targeting - ιΠY = ιY 2.3475 2.3475 0 0.4370 2.3750 2.3750 0.7 0.3742

Non-Optimized Rules

Taylor Rule with Smoothing 1.5 0.25 0.7 -0.6848 1.5 0.25 0.7 -0.3669

Simple Taylor Rule 1.5 - - Indeterminacy 1.5 - - Indeterminacy

Note: For each monetary policy rule the welfare gain is measured relatively to a benchmark Taylor rule with ιΠY
= 1.5, ιgY

= 0.25, ι
R

= 0. The

results are obtained assuming ρK = 0.8 and σK = 0.005.
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